Artículo
Two examples of vanishing and squeezing in K1
Fecha de publicación:
06/2020
Editorial:
State University of New York
Revista:
New York Journal of Mathematics
ISSN:
1076-9803
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K1. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K1; this follows from the well-known result of Bass, Heller and Swan.
Palabras clave:
ASSEMBLY MAPS
,
CONTROLLED TOPOLOGY
,
BASS-HELLER-SWAN THEOREM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ellis, Eugenia; Rodríguez Cirone, Emanuel Darío; Tartaglia, Gisela; Vega, Santiago Javier; Two examples of vanishing and squeezing in K1; State University of New York; New York Journal of Mathematics; 26; 6-2020; 607-635
Compartir