Mostrar el registro sencillo del ítem

dc.contributor.author
González Dondo, Diego  
dc.contributor.author
Redolfi, Javier Andrés  
dc.contributor.author
García, Daiana  
dc.contributor.author
Araguás, Roberto Gastón  
dc.date.available
2021-07-26T18:57:54Z  
dc.date.issued
2021-06  
dc.identifier.citation
González Dondo, Diego; Redolfi, Javier Andrés; García, Daiana; Araguás, Roberto Gastón; Application of Deep-Learning Methods to Real Time Face Mask Detection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 6-2021; 994-1001  
dc.identifier.issn
1548-0992  
dc.identifier.uri
http://hdl.handle.net/11336/136969  
dc.description.abstract
Due to the high rate of infection and the lack of a specific vaccine or medication for the new disease known as SARS-CoV2, the World Health Organization (WHO) has recommended the use of Personal Protective Equipment (PPE) as the main measure to avoid or reduce infections. One way to maximize compliance with this recommendation is through an automatic system that can recognize in real time whether a person is correctly using the corresponding PPE. This work presents the design, implementation and performance analysis of a system for recognizing the use of masks from image sequences, with the ability to operate in real time. Based on a generic object detection network, a training scheme is proposed for a detector of faces with masks and faces without masks, wherewith an average detection accuracy higher than 90% is obtained. This accuracy can be improved by using a network with a greater number of parameters, but with a longer computation time. The performance of the detector is validated with video sequences of people with and without facemasks, captured in different environments.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.source
https://latamt.ieeer9.org/index.php/transactions/issue/view/37  
dc.subject
Facemask detection  
dc.subject
EPP detection  
dc.subject
Neural Network  
dc.subject
TinyYOLO  
dc.subject
COVID-19  
dc.subject
SARS-CoV2  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Application of Deep-Learning Methods to Real Time Face Mask Detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-19T18:46:38Z  
dc.journal.volume
19  
dc.journal.number
6  
dc.journal.pagination
994-1001  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva Jersey  
dc.description.fil
Fil: González Dondo, Diego. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina  
dc.description.fil
Fil: Redolfi, Javier Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina  
dc.description.fil
Fil: García, Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Ecología Microbiana; Argentina  
dc.description.fil
Fil: Araguás, Roberto Gastón. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/4378/