Mostrar el registro sencillo del ítem
dc.contributor.author
González Dondo, Diego
dc.contributor.author
Redolfi, Javier Andrés
dc.contributor.author
García, Daiana
dc.contributor.author
Araguás, Roberto Gastón
dc.date.available
2021-07-26T18:57:54Z
dc.date.issued
2021-06
dc.identifier.citation
González Dondo, Diego; Redolfi, Javier Andrés; García, Daiana; Araguás, Roberto Gastón; Application of Deep-Learning Methods to Real Time Face Mask Detection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 6-2021; 994-1001
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/136969
dc.description.abstract
Due to the high rate of infection and the lack of a specific vaccine or medication for the new disease known as SARS-CoV2, the World Health Organization (WHO) has recommended the use of Personal Protective Equipment (PPE) as the main measure to avoid or reduce infections. One way to maximize compliance with this recommendation is through an automatic system that can recognize in real time whether a person is correctly using the corresponding PPE. This work presents the design, implementation and performance analysis of a system for recognizing the use of masks from image sequences, with the ability to operate in real time. Based on a generic object detection network, a training scheme is proposed for a detector of faces with masks and faces without masks, wherewith an average detection accuracy higher than 90% is obtained. This accuracy can be improved by using a network with a greater number of parameters, but with a longer computation time. The performance of the detector is validated with video sequences of people with and without facemasks, captured in different environments.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.source
https://latamt.ieeer9.org/index.php/transactions/issue/view/37
dc.subject
Facemask detection
dc.subject
EPP detection
dc.subject
Neural Network
dc.subject
TinyYOLO
dc.subject
COVID-19
dc.subject
SARS-CoV2
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Application of Deep-Learning Methods to Real Time Face Mask Detection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-19T18:46:38Z
dc.journal.volume
19
dc.journal.number
6
dc.journal.pagination
994-1001
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva Jersey
dc.description.fil
Fil: González Dondo, Diego. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
dc.description.fil
Fil: Redolfi, Javier Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina
dc.description.fil
Fil: García, Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Ecología Microbiana; Argentina
dc.description.fil
Fil: Araguás, Roberto Gastón. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
dc.journal.title
IEEE Latin America Transactions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/4378/
Archivos asociados