Mostrar el registro sencillo del ítem

dc.contributor.author
de Napoli, Pablo Luis  
dc.contributor.author
Stinga, Pablo Raul  
dc.contributor.other
Danielli, Donatella  
dc.contributor.other
Petrosyan, Arshak  
dc.contributor.other
Pop, Camelia A.  
dc.date.available
2021-07-26T16:56:19Z  
dc.date.issued
2019  
dc.identifier.citation
de Napoli, Pablo Luis; Stinga, Pablo Raul; Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups; American Mathematical Society; 723; 2019; 167-189  
dc.identifier.isbn
978-1-4704-4110-4  
dc.identifier.uri
http://hdl.handle.net/11336/136962  
dc.description.abstract
In this paper we show novel underlying connections between fractional powers of the Laplacian on the unit sphere and functions from analytic number theory and differential geometry, like the Hurwitz zeta function and the Minakshisundaram zeta function. Inspired by Minakshisundaram’s ideas, we find a precise pointwise description of (−∆Sn−1 ) su(x) in terms of fractional powers of the Dirichlet-to-Neumann map on the sphere. The Poisson kernel for the unit ball will be essential for this part of the analysis. On the other hand, by using the heat semigroup on the sphere, additional pointwise integrodifferential formulas are obtained. Finally, we prove a characterization with a local extension problem and the interior Harnack inequality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FRACTIONAL LAPLACIAN ON THE SPHERE  
dc.subject
ZETA FUNCTION  
dc.subject
METHOD OF SEMIGROUPS  
dc.subject
SPHERICAL HARMONICS  
dc.subject
HARNACK INEQUALITY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-11-18T17:31:10Z  
dc.journal.volume
723  
dc.journal.pagination
167-189  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Stinga, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/conm/723/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/conm/723  
dc.conicet.paginas
214  
dc.source.titulo
New Developments in the Analysis of Nonlocal Operators (in the series: Contemporary Mathematics)