Mostrar el registro sencillo del ítem
dc.contributor.author
de Napoli, Pablo Luis

dc.contributor.author
Stinga, Pablo Raul

dc.contributor.other
Danielli, Donatella
dc.contributor.other
Petrosyan, Arshak
dc.contributor.other
Pop, Camelia A.
dc.date.available
2021-07-26T16:56:19Z
dc.date.issued
2019
dc.identifier.citation
de Napoli, Pablo Luis; Stinga, Pablo Raul; Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups; American Mathematical Society; 723; 2019; 167-189
dc.identifier.isbn
978-1-4704-4110-4
dc.identifier.uri
http://hdl.handle.net/11336/136962
dc.description.abstract
In this paper we show novel underlying connections between fractional powers of the Laplacian on the unit sphere and functions from analytic number theory and differential geometry, like the Hurwitz zeta function and the Minakshisundaram zeta function. Inspired by Minakshisundaram’s ideas, we find a precise pointwise description of (−∆Sn−1 ) su(x) in terms of fractional powers of the Dirichlet-to-Neumann map on the sphere. The Poisson kernel for the unit ball will be essential for this part of the analysis. On the other hand, by using the heat semigroup on the sphere, additional pointwise integrodifferential formulas are obtained. Finally, we prove a characterization with a local extension problem and the interior Harnack inequality.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FRACTIONAL LAPLACIAN ON THE SPHERE
dc.subject
ZETA FUNCTION
dc.subject
METHOD OF SEMIGROUPS
dc.subject
SPHERICAL HARMONICS
dc.subject
HARNACK INEQUALITY
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2020-11-18T17:31:10Z
dc.journal.volume
723
dc.journal.pagination
167-189
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Stinga, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/conm/723/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/conm/723
dc.conicet.paginas
214
dc.source.titulo
New Developments in the Analysis of Nonlocal Operators (in the series: Contemporary Mathematics)
Archivos asociados