Artículo
Gaussian random permutation and the boson point process
Fecha de publicación:
06/2019
Editorial:
Cornell University
Revista:
arXiv
ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We construct an infinite volume spatial random permutation (χ,σ), where χ⊂ℝd is a point process and σ:χ→χ is a permutation (bijection), associated to the formal Hamiltonian H(χ,σ)=∑_x∈χ‖x−σ(x)‖2. The measures are parametrized by the density ρ of points and the temperature α. Feynman (1953) related spatial random permutations with boson systems and proposed that Bose-Einstein condensation occurs precisely when infinite cycles appear in the corresponding random permutation. Each finite cycle of σ induces a loop of points of χ. For ρ ≤ ρc we define (χ, σ) as a Poisson process of finite unrooted loops that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (2004). We also construct Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2007). For d ≥ 3 and ρ > ρc we define (χ, σ) as the superposition of independent realizations of the Gaussian loop soup at density ρc and the Gaussian random interlacements at density ρ − ρc and call it a Gaussian random permutation at density ρ and temperature α. The resulting measure is Gibbs for the Hamiltonian H and the point marginal χ has the same distribution as the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. Bose-Einstein condensation occurs when the Gaussian random permutation exhibits infinite trajectories.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Armendáriz, María Inés; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés; Gaussian random permutation and the boson point process; Cornell University; arXiv; 6-2019; 1-32
Compartir