Artículo
Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
Fecha de publicación:
05/2021
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1553-5231
e-ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the p−fractional laplacian when the fractional parameter s goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when p goes to ∞. Finally we analyze other eigenvalue problems not previously covered in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Fernandez Bonder, Julian; Silva, Analia; Spedaletti, Juan Francisco; Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 41; 5; 5-2021; 2125-2140
Compartir
Altmétricas