Artículo
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces
Fecha de publicación:
09/2019
Editorial:
World Scientific
Revista:
International Journal of Algebra and Computation
ISSN:
0218-1967
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using Bieberbach groups, we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Acri, Emiliano Francisco; Lutowski, R.; Vendramin, Claudio Leandro; Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces; World Scientific; International Journal of Algebra and Computation; 30; 1; 9-2019; 91-115
Compartir
Altmétricas