Mostrar el registro sencillo del ítem

dc.contributor.author
Prieto, Andrés  
dc.contributor.author
Sanchez Carnero, Noela Belen  
dc.contributor.author
Tarrio Saavedra, Javier  
dc.date.available
2021-07-22T17:17:40Z  
dc.date.issued
2016  
dc.identifier.citation
Automatic seabed classification using functional data analysis and time series cluster techniques; Proceedings of the 8th International Workshop on Spatio-Temporal Modelling; Valencia; España; 2016; 141-144  
dc.identifier.isbn
978-84-608-8468-2  
dc.identifier.uri
http://hdl.handle.net/11336/136680  
dc.description.abstract
Seabed characterization in coastal environments is usually based on acoustic techniques. Since intrusive measurements are very time-consuming, data acquired by echosounders are the best option for classification purposes. The acoustic seabed response is measured by recording local averages of the intensity field during a time interval, which contains the first echo produced by a sonar pulse excitation emitted from the water surface. The standard methodology for the sea bottom classification relies on the accurate extraction of features, which enable a classical multivariate cluster analysis. The effectivity of such reduction of dimensionality on the data may be enhanced by a preprocessing of the signals based on physical knowledge about the acoustic behaviour of the intensity curves depending in the relative position of the echosounder with respect to the seabed. The automatic seabed classification proposed in this work is performed by means of either time series cluster methods or functional data analysis (FDA) non-hierarchical cluster techniques. In both cases, this method does not require any a priori knowledge of the feature extraction on the sonar curves. More precisely, unsupervised methods such as the FDA K-means method, the multivariate medoids cluster, and time series cluster techniques have been applied. The supervised FDA techniques such as functional generalized linear models (GLM) and generalized spectral additive models (GSAM) have been also considered. The proposed technique is illustrated with some sonar data measured in a controlled environment (where the real classification is well-known) and compared with those results obtained with classical multivariate hierarchical cluster tools.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad de Valencia  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLUSTER CLASSIFICATION  
dc.subject
FUNCTIONAL DATA ANALYSIS  
dc.subject
TIME SERIES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic seabed classification using functional data analysis and time series cluster techniques  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2021-06-30T18:33:29Z  
dc.journal.pagination
141-144  
dc.journal.pais
España  
dc.journal.ciudad
Valencia  
dc.description.fil
Fil: Prieto, Andrés. Universidad da Coruña; España  
dc.description.fil
Fil: Sanchez Carnero, Noela Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad de Vigo; España  
dc.description.fil
Fil: Tarrio Saavedra, Javier. Universidad da Coruña; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://congresos.adeituv.es/metma8/  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
Proceedings of the 8th International Workshop on Spatio-Temporal Modelling  
dc.date.evento
2016-06-01  
dc.description.ciudadEvento
Valencia  
dc.description.paisEvento
España  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad de Valencia. Facultad de Ciencias Matemáticas  
dc.description.institucionOrganizadora
Universitat Jaume I  
dc.description.institucionOrganizadora
Fundació Universitat Empresa  
dc.source.libro
Proceedings of the 8th International Workshop on Spatio-Temporal Modelling  
dc.date.eventoHasta
2016-06-03  
dc.type
Conferencia