Mostrar el registro sencillo del ítem

dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
de Paula, Mariano  
dc.contributor.author
Trimboli, Maximiliano Daniel  
dc.contributor.author
Carlucho, Ignacio  
dc.date.available
2021-07-22T12:05:23Z  
dc.date.issued
2020-12  
dc.identifier.citation
Avila, Luis Omar; de Paula, Mariano; Trimboli, Maximiliano Daniel; Carlucho, Ignacio; Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids; Elsevier Science; Applied Soft Computing; 97; 12-2020; 1-39  
dc.identifier.issn
1568-4946  
dc.identifier.uri
http://hdl.handle.net/11336/136641  
dc.description.abstract
Photovoltaic systems (PV) are having an increased importance in modern smart grids systems. Usually, in order to maximize the energy output of the PV arrays a maximum power point tracking (MPPT) algorithm is used. However, once deployed, weather conditions such as clouds can cause shades in the PV arrays affecting the dynamics of each panel differently. These conditions directly affect the available energy output of the arrays and in turn make the MPPT task extremely difficult. For these reasons, under partial shading conditions, it is necessary to have algorithms that are able to learn and adapt online to the changing state of the system. In this work we propose the use of deep reinforcement learning (DRL) techniques to address the MPPT problem of a PV array under partial shading conditions. We develop a model free RL algorithm to maximize the efficiency in MPPT control. The agent's policy is parameterized by neural networks, which take the sensory information as input and directly output the control signal. Furthermore, a PV environment under shading conditions was developed in the open source OpenAI Gym platform and is made available in an open repository. Several tests are performed, using the developed simulated environment, to test the robustness of the proposed control strategies to different climate conditions. The obtained results show the feasibility of our proposal with a successful performance with fast responses and stable behaviors. The best results for the presented methodology show that the maximum operating power point achieved has a deviation less than 1% compared to the theoretical maximum power point.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DEEP RL  
dc.subject
MPPT  
dc.subject
OPENAI GYM  
dc.subject
PV SYSTEMS  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-22T15:45:11Z  
dc.journal.volume
97  
dc.journal.pagination
1-39  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Trimboli, Maximiliano Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Carlucho, Ignacio. State University of Louisiana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Applied Soft Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1568494620306499  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.asoc.2020.106711