Artículo
An algebraic study of S5-modal Gödel logic
Fecha de publicación:
03/02/2021
Editorial:
Springer
Revista:
Studia Logica
ISSN:
0039-3215
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.
Palabras clave:
GODEL LOGIC
,
S5-MODAL LOGIC
,
ALGEBRAIC SEMANTICS
,
PRIESTLEY DUALITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Castaño, Diego Nicolás; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Rueda, Laura; An algebraic study of S5-modal Gödel logic; Springer; Studia Logica; 3-2-2021
Compartir
Altmétricas