Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Jamming and percolation of linear k -mers on honeycomb lattices

Iglesias Panuska, G. A.; Centres, Paulo MarceloIcon ; Ramirez Pastor, Antonio JoseIcon
Fecha de publicación: 09/2020
Editorial: American Physical Society
Revista: Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN: 2470-0045
e-ISSN: 2470-0053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
Palabras clave: JAMMING , PERCOLATION , LATTICE , HONEYCOMB
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.390Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/136537
DOI: http://dx.doi.org/10.1103/PhysRevE.102.032123
URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.032123
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 032123
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES