Mostrar el registro sencillo del ítem

dc.contributor.author
De La Cruz Félix, Nelphy  
dc.contributor.author
Centres, Paulo Marcelo  
dc.contributor.author
Ramirez Pastor, Antonio Jose  
dc.date.available
2021-07-20T21:47:02Z  
dc.date.issued
2020-07-30  
dc.identifier.citation
De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Irreversible bilayer adsorption of straight semirigid rods on two-dimensional square lattices: Jamming and percolation properties; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 30-7-2020; 1-13; 012153  
dc.identifier.issn
2470-0045  
dc.identifier.uri
http://hdl.handle.net/11336/136535  
dc.description.abstract
Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of straight semirigid rods adsorbed on two-dimensional square lattices. The depositing objects can be adsorbed on the surface forming two layers. The filling of the lattice is carried out following a generalized random sequential adsorption (RSA) mechanism. In each elementary step, (i) a set of k consecutive nearest-neighbor sites (aligned along one of two lattice axes) is randomly chosen and (ii) if each selected site is either empty or occupied by a k -mer unit in the first layer, then a new k -mer is then deposited onto the lattice. Otherwise, the attempt is rejected. The process starts with an initially empty lattice and continues until the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. A wide range of values of k ( 2 ≤ k ≤ 64 ) is investigated. The study of the kinetic properties of the system shows that (1) the jamming coverage θ j , k is a decreasing function with increasing k , with θ j , k → ∞ = 0.7299 ( 21 ) the limit value for infinitely long k -mers and (2) the jamming exponent ν j remains close to 1, regardless of the size k considered. These findings are discussed in terms of the lattice dimensionality and number of sites available for adsorption. The dependence of the percolation threshold θ c , k as a function of k is also determined, with θ c , k = A + B exp ( − k / C ) , where A = θ c , k → ∞ = 0.0457 ( 68 ) is the value of the percolation threshold by infinitely long k -mers, B = 0.276 ( 25 ) , and C = 14 ( 2 ) . This monotonic decreasing behavior is completely different from that observed for the standard problem of straight rods on square lattices, where the percolation threshold shows a nonmonotonic k -mer size dependence. The differences between the results obtained from bilayer and monolayer phases are explained on the basis of the transversal overlaps between rods occurring in the bilayer problem. This effect (which we call a “cross-linking effect”), its consequences on the filling kinetics, and its implications in the field of conductivity of composites filled with elongated particles (or fibers) are discussed in detail. Finally, the precise determination of the critical exponents ν , β , and γ indicates that, although the increasing in the width of the deposited layer drastically affects the behavior of the percolation threshold with k and other critical properties (such as the crossing points of the percolation probability functions), it does not alter the nature of the percolation transition occurring in the system. Accordingly, the bilayer model belongs to the same universality class as two-dimensional standard percolation model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SEMIRIGID  
dc.subject
JAMMING  
dc.subject
PERCOLATION  
dc.subject
ADSORPTION  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Irreversible bilayer adsorption of straight semirigid rods on two-dimensional square lattices: Jamming and percolation properties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-04-22T20:45:51Z  
dc.identifier.eissn
2470-0053  
dc.journal.volume
102  
dc.journal.number
1  
dc.journal.pagination
1-13; 012153  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República Dominicana  
dc.description.fil
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.102.012153  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.012153