Artículo
Classification of RNA backbone conformations into rotamers using 13C' chemical shifts: Exploring how far we can go
Icazatti Zuñiga, Alejandro Ariel
; Loyola, Juan Martin
; Szleifer, Igal; Vila, Jorge Alberto
; Martín, Osvaldo Antonio
Fecha de publicación:
10/2019
Editorial:
PeerJ Inc.
Revista:
PeerJ
ISSN:
2167-8359
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The conformational space of the ribose-phosphate backbone is very complex as it is defined in terms of six torsional angles. To help delimit the RNA backbone conformational preferences, 46 rotamers have been defined in terms of these torsional angles. In the present work, we use the ribose experimental and theoretical 13C' chemical shifts data and machine learning methods to classify RNA backbone conformations into rotamers and families of rotamers. We show to what extent the experimental 13C' chemical shifts can be used to identify rotamers and discuss some problem with the theoretical computations of 13C' chemical shifts.
Palabras clave:
CHEMICAL SHIFTS
,
DFT
,
MACHINE LEARNING
,
RNA
,
ROTAMERS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Icazatti Zuñiga, Alejandro Ariel; Loyola, Juan Martin; Szleifer, Igal; Vila, Jorge Alberto; Martín, Osvaldo Antonio; Classification of RNA backbone conformations into rotamers using 13C' chemical shifts: Exploring how far we can go; PeerJ Inc.; PeerJ; 7; 10-2019; 1-17
Compartir
Altmétricas