Artículo
Eigenvalue bounds and spectral asymptotics for fractal Laplacians
Fecha de publicación:
03/2019
Editorial:
European Mathematical Society
Revista:
Journal of Fractal Geometry
ISSN:
2308-1309
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we present Lyapunov type inequalities for generalized one dimensional Laplacian operators defined by positive atomless Borel measures. As applications, we present lower bounds for the first eigenvalue when the measure is a Bernoulli convolution, with or without overlaps. Also, for symmetric Bernoulli convolutions we obtain two sided bounds for higher eigenvalues, and we recover the asymptotic growth of the spectral counting function by elementary means without using the Renewal Theorem. We also consider the Laplacian on the Sierpinsky gasket and other similar fractals, and we deduce a lower bound of their eigenvalues from a Lyapunov type inequality.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Pinasco, Juan Pablo; Scarola, Cristian; Eigenvalue bounds and spectral asymptotics for fractal Laplacians; European Mathematical Society; Journal of Fractal Geometry; 6; 2; 3-2019; 109-126
Compartir
Altmétricas