Artículo
An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots
Fecha de publicación:
02/2020
Editorial:
Elsevier Science Inc.
Revista:
ISA Transactions
ISSN:
0019-0578
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Intelligent control systems are being developed for the control of plants with complex dynamics. However, the simplicity of the PID (proportional–integrative–derivative) controller makes it still widely used in industrial applications and robotics. This paper proposes an intelligent control system based on a deep reinforcement learning approach for self-adaptive multiple PID controllers for mobile robots. The proposed hybrid control strategy uses an actor–critic structure and it only receives low-level dynamic information as input and simultaneously estimates the multiple parameters or gains of the PID controllers. The proposed approach was tested in several simulated environments and in a real time robotic platform showing the feasibility of the approach for the low-level control of mobile robots. From the simulation and experimental results, our proposed approach demonstrated that it can be of aid by providing with behavior that can compensate or even adapt to changes in the uncertain environments providing a model free unsupervised solution. Also, a comparative study against other adaptive methods for multiple PIDs tuning is presented, showing a successful performance of the approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFICEN)
Articulos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Articulos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Citación
Carlucho, Ignacio; de Paula, Mariano; Acosta, Gerardo Gabriel; An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots; Elsevier Science Inc.; ISA Transactions; 102; 2-2020; 280-294
Compartir
Altmétricas