Artículo
Nucleation and growth in two dimensions
Fecha de publicación:
22/10/2019
Editorial:
John Wiley & Sons Inc
Revista:
Random Structures Algorithms
ISSN:
1042-9832
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a dynamical process on a graph G, in which vertices are infected (randomly) at a rate which depends on the number of their neighbors that are already infected. This model includes bootstrap percolation and first-passage percolation as its extreme points. We give a precise description of the evolution of this process on the graph Z^2, significantly sharpening results of Dehghanpour and Schonmann. In particular, we determine the typical infection time up to a constant factor for almost all natural values of the parameters, and in a large range we obtain a stronger, sharp threshold.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bollobás, Béla; Griffiths, Simon; Morris, Robert; Trivellato Rolla, Leonardo; Smith, Paul; Nucleation and growth in two dimensions; John Wiley & Sons Inc; Random Structures Algorithms; 56; 1; 22-10-2019; 63-96
Compartir
Altmétricas