Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Traceability of soybeans produced in Argentina based on their trace element profiles

Hidalgo, Melisa JazminIcon ; Fechner, Diana CorinaIcon ; Ballabio, Davide; Marchevsky, Eduardo JorgeIcon ; Pellerano, Roberto GerardoIcon
Fecha de publicación: 06/2020
Editorial: John Wiley & Sons Ltd
Revista: Journal of Chemometrics
ISSN: 0886-9383
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Soybean (Glycine max (L.) Merril) is a popular foodstuff and crop plant, used in human and animal food. In this work, multielement analysis of soybean grains samples in combination with chemometric tools was used to classify the geographical origins. For this purpose, 120 samples from three provinces of Argentina were analyzed for a panel of 20 trace elements by inductively coupled plasma mass spectrometry. First, we used principal component analysis for exploratory analysis. Then, supervised classification techniques such as support vector machine (SMV) discriminant analysis (SVM-DA), random forest, k-nearest neighbors, and class-modeling techniques such as soft independent modeling of class analogy (SIMCA), potential functions, and one-class SVM were applied as tools to establish a model of origin of samples. The performance of the techniques was compared using global indexes. Among all the models tested, SVM and SIMCA showed the highest percentages in terms of prediction ability in cross-validation with average values of 99.3% for SVM-DA and a median value of balanced accuracy of 96.0%, 91.7%, and 88.3% for the three origins using SIMCA. Results suggested that the developed methodology by chemometric techniques is robust and reliable for the geographical classification of soybean samples from Argentina.
Palabras clave: CLASS-MODELING TECHNIQUES , GEOGRAPHICAL ORIGIN , SOYBEAN GRAINS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.004Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/136189
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.3252
DOI: http://dx.doi.org/10.1002/cem.3252
Colecciones
Articulos(INQUISAL)
Articulos de INST. DE QUIMICA DE SAN LUIS
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Hidalgo, Melisa Jazmin; Fechner, Diana Corina; Ballabio, Davide; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo; Traceability of soybeans produced in Argentina based on their trace element profiles; John Wiley & Sons Ltd; Journal of Chemometrics; 34; 12; 6-2020; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES