Artículo
Age density patterns in patients medical conditions: A clustering approach
Alhasoun, Fahad; Aleissa, Faisal; Alhazzani, May; Moyano, Luis Gregorio
; Pinhanez, Claudio; Gonzalez, Marta C.
Fecha de publicación:
07/2018
Editorial:
Public Library of Science
Revista:
Plos Computational Biology
ISSN:
1553-734X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents a data analysis framework to uncover relationships between health conditions, age and sex for a large population of patients. We study a massive heterogeneous sample of 1.7 million patients in Brazil, containing 47 million of health records with detailed medical conditions for visits to medical facilities for a period of 17 months. The findings suggest that medical conditions can be grouped into clusters that share very distinctive densities in the ages of the patients. For each cluster, we further present the ICD-10 chapters within it. Finally, we relate the findings to comorbidity networks, uncovering the relation of the discovered clusters of age densities to comorbidity networks literature.
Palabras clave:
DATA ANALYSIS
,
HEALTHCARE
,
COMORBIDITY
,
COMPLEX NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Alhasoun, Fahad; Aleissa, Faisal; Alhazzani, May; Moyano, Luis Gregorio; Pinhanez, Claudio; et al.; Age density patterns in patients medical conditions: A clustering approach; Public Library of Science; Plos Computational Biology; 14; 6; 7-2018; 1-13
Compartir
Altmétricas