Artículo
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
Donnelly Kehoe, Patricio Andres
; Pascariello, Guido Orlando
; García, Adolfo Martín
; Hodges, John R.; Miller, Bruce; Rosen, Howie; Manes, Facundo Francisco
; Landin Romero, Ramon; Matallana, Diana; Serrano, Cecilia Mariela; Herrera, Eduar; Reyes, Pablo; Santamaria-Garcia, Hernando; Kumfor, Fiona; Piguet, Olivier; Ibañez, Agustin Mariano
; Sedeño, Lucas
Fecha de publicación:
09/2019
Editorial:
Elsevier
Revista:
Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
ISSN:
2352-8729
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Introduction: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. Methods: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. Results: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). Discussion: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.
Palabras clave:
BVFTD
,
CLASSIFIERS
,
DATA-DRIVEN COMPUTATIONAL APPROACHES
,
DEMENTIA
,
NEUROIMAGING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INCYT)
Articulos de INSTITUTO DE NEUROCIENCIAS COGNITIVAS Y TRASLACIONAL
Articulos de INSTITUTO DE NEUROCIENCIAS COGNITIVAS Y TRASLACIONAL
Citación
Donnelly Kehoe, Patricio Andres; Pascariello, Guido Orlando; García, Adolfo Martín; Hodges, John R.; Miller, Bruce; et al.; Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging; Elsevier; Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring; 11; 9-2019; 588-598
Compartir
Altmétricas