Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

An introduction to Nichols Algebras

Título del libro: Quantization, geometry and noncommutative structures in mathematics and physics

Andruskiewitsch, NicolasIcon
Otros responsables: Cardona, Alexander; Morales, Pedro; Ocampo, Hernan; Paycha, Sylvie; Reyes Lega, Andres Fernando
Fecha de publicación: 2018
Editorial: Springer International Publishing
ISBN: 978-3-319-65426-3
Idioma: Inglés
Clasificación temática:
Matemática Pura

Resumen

Nichols algebras, Hopf algebras in braided categories with distinguishedproperties, were discovered several times. They appeared for the first time in the thesis of W. Nichols [72], aimed to construct new examples of Hopf algebras. In this same paper, the small quantum group uq (sl3), with q a primitive cubic root of one, was introduced. Independently they arose in the paper [84] by Woronowicz as the invariant part of his non-commutative differential calculus. Later there were two unrelated attempts to characterize abstractly the positive part U^+_q(g) of the quantized enveloping algebra of a simple finite-dimensional Lie algebra g at a generic parameter q. First, Lusztig showed in [64] that U^+_q(g) can be defined through the radical of a suitable invariant bilinear form. Second, Rosso interpreted U^+_q(g) in [74,75] via quantum shuffles. These two viewpoints were conciliated later, as alternative definitions of the same notion of Nichols algebra. Other early appearances of Nichols algebras are in [65, 77]. As observed in [17, 18], Nichols algebras are basic invariants of pointed Hopf algebras, their study being crucial in the classification programof Hopf algebras; see also [10]. More recently, they are the subject of an intriguing proposal in Conformal Field Theory [79]. This is an introduction from scratch to the notion of Nichols algebra. I was invited to give a mini-course of two lessons, 90 min each, at the Geometric, Algebraic and Topological Methods for Quantum Field Theory, Villa de Leyva, Colombia, in July 2015. The theme was Nichols algebras that requires several preliminaries and some experience to be appreciated; a selection of the ideas to be presented was necessary. These notes intend to preserve the spirit of the course, discussing some motivational background material in Sect. 4.1, then dealing with braided vector spaces and braided tensor categories in Sect. 4.2, arriving at last to the definition and main calculation tools of Nichols algebras in Sect. 4.3. I hope that the various examples and exercises scattered through the text would serve the reader to absorb the beautiful concept of Nichols algebra and its many facets. Section 4.4 is a survey of the main examples of, and results on, Nichols algebras that I am aware of; here the pace is faster and the precise formulation of some statementsis referred to the literature. I apologize in advance for any possible omission. This section has intersection with, and is an update of, the surveys [1, 2, 19], to which I refer for further information.
Palabras clave: Hopf algebras , Nichols algebras , Quantum Yang-Baxter equation
Ver el registro completo
 
Archivos asociados
Tamaño: 653.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/135766
URL: https://www.springer.com/la/book/9783319654263
Colecciones
Capítulos de libros(CIEM)
Capítulos de libros de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Andruskiewitsch, Nicolas; An introduction to Nichols Algebras; Springer International Publishing; 2018; 135-195
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES