Artículo
Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications
Mészáros, Bálint; Sámano Sánchez, Hugo; Alvarado Valverde, Jesús; Čalyševa, Jelena; Martinez Perez, Elizabeth
; Alves, Renato; Shields, Denis C.; Kumar, Manjeet; Rippmann, Friedrich; Chemes, Lucia Beatriz
; Gibson, Toby James
Fecha de publicación:
12/01/2021
Editorial:
American Association for the Advancement of Science
Revista:
Science Signaling
ISSN:
1945-0877
e-ISSN:
1937-9145
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Palabras clave:
COVID-19
,
ACE2
,
INTEGRINS
,
SPIKE
,
SLIMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Mészáros, Bálint; Sámano Sánchez, Hugo; Alvarado Valverde, Jesús; Čalyševa, Jelena; Martinez Perez, Elizabeth; et al.; Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications; American Association for the Advancement of Science; Science Signaling; 14; 665; 12-1-2021; 1-26
Compartir
Altmétricas