Mostrar el registro sencillo del ítem

dc.contributor.author
Mazzitello, Karina Irma  
dc.contributor.author
Jiang, Yi  
dc.contributor.author
Arizmendi, Constancio Miguel  
dc.date.available
2021-07-05T21:38:20Z  
dc.date.issued
2020-12-31  
dc.identifier.citation
Mazzitello, Karina Irma; Jiang, Yi; Arizmendi, Constancio Miguel; Optimising SARS-CoV-2 pooled testing strategies on social networks for low-resource settings; Cornell University; Physics and Society; 2020; 31-12-2020; 1-13  
dc.identifier.issn
2331-8422  
dc.identifier.uri
http://hdl.handle.net/11336/135514  
dc.description.abstract
Controlling the COVID-19 pandemic is an urgent global challenge. The rapid geographic spread of SARS-CoV-2 directly reflects the social structure. Before effective vaccines and treatments are widely available, we have to rely on alternative, non-pharmaceutical interventions, including frequent testing, contact tracing, social distancing, mask wearing, and hand-washing, as public health practises to slow down the spread of the disease. However, frequent testing is the key in the absence of any alternative. We propose a network approach to determine the optimal low resources setting oriented pool testing strategies that identifies infected individuals in a smallnumber of tests and few rounds of testing, at low prevalence of the virus. We simulate stochastic infection curves on societies under quarantine. Allowing some social interaction is possible to keep the COVID-19 curve flat. However, similar results can be strategically obtained searching and isolating infected persons to preserve a healthier social structure. Here, we analyze which are the best strategies to contain the virus applying an algorithm that combine samples and testing them in groups [1]. A relevant parameter to keep infection curves flat using this algorithm is the daily frequency of testing at zones where a high infection rate is reported. On the other hand, thealgorithm efficiency is low for random search of infected people.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cornell University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
POOL TESTING  
dc.subject
SOCIAL NETWORKS  
dc.subject
COVID-19  
dc.subject.classification
Epidemiología  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Optimising SARS-CoV-2 pooled testing strategies on social networks for low-resource settings  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-05T18:15:59Z  
dc.journal.volume
2020  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Santa Fe  
dc.description.fil
Fil: Mazzitello, Karina Irma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina  
dc.description.fil
Fil: Jiang, Yi. Department Of Math & Stat, Georgia State University; Estados Unidos  
dc.description.fil
Fil: Arizmendi, Constancio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina  
dc.journal.title
Physics and Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2012.15702  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/ac039b/meta