Artículo
JH-singularity and JH-regularity of multivariate stationary processes over LCA groups
Fecha de publicación:
04/2021
Editorial:
Kazimierz Urbanik Center for Probability and Mathematical Statistics
Revista:
Probability and Mathematical Statistics
ISSN:
0208-4147
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be an LCA group, I' its dual group, and H a closed subgroup of G such that its annihilator is countable. Let M denote a regular positive semidefinite matrix-valued Borel measure on I' and L^2(M) the corresponding Hilbert space of matrix-valued functions square-integrable with respect to M. For g ϵ G, let Z_g be the closure in L^2(M) of all matrix-valued trigonometric polynomials with frequencies from g+H. We describe those measures M for which Z_g = L^2(M) as well as those for which ∩ gϵG Zg = {0}. Interpreting M as a spectral measure of a multivariate wide sense stationary processon G and denoting by J_H the family of H-cosets we obtain conditions forJ_H-singularity and JH-regularity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Klotz, Lutz Peter; Medina, Juan Miguel; JH-singularity and JH-regularity of multivariate stationary processes over LCA groups; Kazimierz Urbanik Center for Probability and Mathematical Statistics; Probability and Mathematical Statistics; 41; 1; 4-2021; 173-192
Compartir
Altmétricas