Mostrar el registro sencillo del ítem

dc.contributor.author
Encina, Ezequiel Roberto  
dc.contributor.author
Coronado, Eduardo A.  
dc.date.available
2021-07-05T20:44:08Z  
dc.date.issued
2018-03  
dc.identifier.citation
Encina, Ezequiel Roberto; Coronado, Eduardo A.; Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties; American Chemical Society; Journal of Physical Chemistry C; 122; 8; 3-2018; 4589-4599  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/135491  
dc.description.abstract
Photoactive hybrid nanostructures composed of metal oxides and plasmonic metals are able to perform the conversion of radiant (solar) energy into electrical or chemical energy. However, their use in large-scale practical applications still requires their photoconversion efficiency to be improved. In this work, the light-harvesting properties of hematite/plasmonic metal rodlike hybrid nanostructures are investigated on the basis of discrete dipole approximation simulations. The effects of the length and nature of the metallic counterpart on the far- and near-field optical properties of the hybrid nanostructure are analyzed in detail. The implemented methodology allowed us to assess the contribution of each component of the hybrid nanostructure to the absorption efficiency, Qabs, separately. In turn, the Qabs values obtained were employed to determine the absorbed photon flux, ø, within the α-Fe2O3 component, a relevant quantity directly related to the photoconversion efficiency. It was found that both absorption efficiency Qabs and absorbed photon flux ø can be largely enhanced through a proper selection of the length and nature of the metallic counterpart of the nanostructure, evidencing plasmon-enhanced light absorption in the α-Fe2O3 component, which is attributed to a plasmon-induced energy transfer mechanism based on near-field enhancements. Importantly, it was found that the highest ø values achieved for nanostructures composed of Ag and Al (∼11 × 1016 photons cm-2 s-1) are nearly 3 times larger than those corresponding to nanostructures composed of Au (∼4 × 1016 photons cm-2 s-1). In addition, a direct relationship between the absorbed photon flux, ø, and optical characteristics of the nanostructures, that is, the bandgap energy of α-Fe2O3 and the energy and radiative line width of the localized surface plasmon resonance, was empirically obtained. Such a relationship not only complements but also overcomes the limitations of the reported useful criteria and provides helpful guidelines for the optimum design of hybrid nanostructures with enhanced photoactive properties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hybrid nanostructures  
dc.subject
Optical properties  
dc.subject
Near field  
dc.subject
Absorption enhancement  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-05T14:35:34Z  
dc.identifier.eissn
1932-7455  
dc.journal.volume
122  
dc.journal.number
8  
dc.journal.pagination
4589-4599  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b12486  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.7b12486