Artículo
People counting using visible and infrared images
Biagini, Martín; Filipic, Joaquín; Mas, Ignacio Agustin
; Pose, Claudio Daniel
; Giribet, Juan Ignacio
; Parisi, Daniel Ricardo
Fecha de publicación:
08/2021
Editorial:
Elsevier Science
Revista:
Neurocomputing
ISSN:
0925-2312
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose the use of convolutional neural networks (CNN) for counting and positioning people given aerial shots of visible and infrared images. Our data set is entirely made of semi-artificial images created from real photographs taken from a drone using a dual FLIR camera. We compare the performance between the CNNs using 3 (RGB) and 4 (RGB + IR) channels, both under different lighting conditions. The 4-channel network responds better in all situations, particularly in cases of poor visible illumination that can be found in night scenarios. The proposed methodology could be applied to real situations when an extensive data bank of 4-channel images is available.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Biagini, Martín; Filipic, Joaquín; Mas, Ignacio Agustin; Pose, Claudio Daniel; Giribet, Juan Ignacio; et al.; People counting using visible and infrared images; Elsevier Science; Neurocomputing; 450; 25; 8-2021; 25-32
Compartir
Altmétricas