Artículo
New bounds on the dimensions of planar distance sets
Fecha de publicación:
07/2019
Editorial:
Birkhauser Verlag Ag
Revista:
Geometric and Functional Analysis
ISSN:
1016-443X
e-ISSN:
1420-8970
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Keleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-1948
Compartir
Altmétricas