Mostrar el registro sencillo del ítem
dc.contributor.author
Pinasco, Juan Pablo
dc.date.available
2021-07-02T15:22:29Z
dc.date.issued
2013
dc.identifier.citation
Pinasco, Juan Pablo; Lyapunov-type inequalities: with applications to eigenvalue problems; Springer; 1; 2013; 131
dc.identifier.isbn
978-1-4614-8522-3
dc.identifier.issn
2191-8198
dc.identifier.uri
http://hdl.handle.net/11336/135403
dc.description.abstract
Introduction The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of eigenvalue asymptotics driven by the coupling of the equations instead of the order of the equations. For p=2, the coupling and the order of the equations are the same, so this cannot happen in linear problems. Another striking difference between linear and quasilinear second order differential operators is the existence of Lyapunov-type inequalities in R^n when p>n. Since the linear case corresponds to p=2, for the usual Laplacian there exists a Lyapunov inequality only for one-dimensional problems. For linear higher order problems, several Lyapunov-type inequalities were found by Egorov and Kondratiev and collected in On spectral theory of elliptic operators, Birkhauser Basel 1996. However, there exists an interesting interplay between the dimension of the underlying space, the order of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed. Also, the Lyapunov inequality for differential equations in Orlicz spaces can be used to develop an oscillation theory, bypassing the classical sturmian theory which is not known yet for those equations. For more general operators, like the p(x) laplacian, the possibility of existence of Lyapunov-type inequalities remains unexplored.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/closedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LYAPUNOV INEQUALITY
dc.subject
ORLICZ SPACES
dc.subject
EIGENVALUE BOUNDS
dc.subject
INTEGRAL INEQUALITIES
dc.subject
P-LAPLACE OPERATOR
dc.subject
QUASILINEAR OPERATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Lyapunov-type inequalities: with applications to eigenvalue problems
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/book
dc.type
info:ar-repo/semantics/libro
dc.date.updated
2021-03-15T15:49:44Z
dc.identifier.eissn
2191-8201
dc.journal.volume
1
dc.journal.pagination
131
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/book/10.1007%2F978-1-4614-8523-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-1-4614-8523-0;
Archivos asociados
Tamaño:
1.268Mb
Formato:
PDF