Artículo
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Fecha de publicación:
04/2021
Editorial:
MDPI
Revista:
Applied Sciences
ISSN:
2076-3417
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we present a collection of fifteen novel contributions on machine learning methods with low-quality or imperfect datasets, which were accepted for publication in the special issue “Machine Learning Methods with Noisy, Incomplete or Small Datasets”, Applied Sciences (ISSN 2076-3417). These papers provide a variety of novel approaches to real-world machine learning problems where available datasets suffer from imperfections such as missing values, noise or artefacts. Contributions in applied sciences include medical applications, epidemic management tools, methodological work, and industrial applications, among others. We believe that this special issue will bring new ideas for solving this challenging problem, and will provide clear examples of application in real-world scenarios.
Palabras clave:
Machine learning
,
artificial intelligence
,
neural networks
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Caiafa, César Federico; Zhe, Sun ; Tanaka, Toshihisa ; Marti Puig, Pere; Solé Casals, Jordi; Machine Learning Methods with Noisy, Incomplete or Small Datasets; MDPI; Applied Sciences; 11; 9; 4-2021; 1-4
Compartir
Altmétricas