Mostrar el registro sencillo del ítem

dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Iacono, Lucas Emanuel  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2021-07-01T12:36:19Z  
dc.date.issued
2018-11  
dc.identifier.citation
Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-729  
dc.identifier.issn
1064-7570  
dc.identifier.uri
http://hdl.handle.net/11336/135246  
dc.description.abstract
Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SCIENTIFIC COMPUTING  
dc.subject
FROST PREDICTION APPLICATIONS  
dc.subject
CLOUD COMPUTING  
dc.subject
SCHEDULING  
dc.subject
ANT COLONY OPTIMIZATION  
dc.subject
PARTICLE SWARM OPTIMIZATION  
dc.subject
GENETIC ALGORITHMS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-07T15:36:35Z  
dc.journal.volume
27  
dc.journal.number
3  
dc.journal.pagination
688-729  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina  
dc.journal.title
Journal Of Network And Systems Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10922-018-9481-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10922-018-9481-0