Mostrar el registro sencillo del ítem

dc.contributor.author
Palumbo, Félix Roberto Mario  
dc.contributor.author
Liang, Xianhu  
dc.contributor.author
Yuan, Bin  
dc.contributor.author
Shi, Yuanyuan  
dc.contributor.author
Hui, Fei  
dc.contributor.author
Villena, Marco A.  
dc.contributor.author
Lanza, Mario  
dc.date.available
2021-06-18T16:16:17Z  
dc.date.issued
2018-03  
dc.identifier.citation
Palumbo, Félix Roberto Mario; Liang, Xianhu; Yuan, Bin; Shi, Yuanyuan; Hui, Fei; et al.; Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric; Blackwell Publishing; Advanced Electronic Materials; 4; 3; 3-2018; 1-8  
dc.identifier.uri
http://hdl.handle.net/11336/134568  
dc.description.abstract
Multilayer hexagonal boron nitride (h-BN) is an insulating 2D material that shows good interaction with graphene and MoS2, and it is considered a very promising dielectric for future 2D-materials-based electronic devices. Previous studies analyzed the dielectric properties of thick (>10 nm) mechanically exfoliated h-BN nanoflakes (diameter < 20 μm) via conductive atomic force microscopy and applying very high voltages (>10 V); however, these methods are not scalable. In this work, the first device-level reliability study of large area h-BN dielectric stacks (grown via chemical vapor deposition) is presented, and the complete dielectric breakdown (BD) process is described. The experiments and calculations indicate that the BD process in metal/h-BN/metal devices starts with a progressive current increase across the h-BN stack until current densities up to 0.1 A cm−2 are reached. After that, the currents increase by sudden steps, which can be large (>1 order of magnitude, related to the BD of one/few h-BN layers) or small (<1 order of magnitude, related to the lateral propagation of the BD). The bimodal BD process of h-BN here presented (which cannot be detected via conductive atomic force microscopy) is essential to understand the reliability of 2D-material-based electronic devices using h-BN as dielectric.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Blackwell Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHARGE TRAPPING  
dc.subject
DIELECTRIC BREAKDOWN (BD)  
dc.subject
HEXAGONAL BORON NITRIDE (H-BN)  
dc.subject
RELIABILITY  
dc.subject
STRESS-INDUCED LEAKAGE CURRENT (SILC)  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-16T15:18:38Z  
dc.identifier.eissn
2199-160X  
dc.journal.volume
4  
dc.journal.number
3  
dc.journal.pagination
1-8  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Palumbo, Félix Roberto Mario. Comision Nacional de Energia Atomica. Gerencia de Area de Investigaciones y Aplicaciones No Nucleares (cac).; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Liang, Xianhu. Soochow University; China  
dc.description.fil
Fil: Yuan, Bin. Soochow University; China  
dc.description.fil
Fil: Shi, Yuanyuan. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Hui, Fei. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Villena, Marco A.. Soochow University; China  
dc.description.fil
Fil: Lanza, Mario. Soochow University; China  
dc.journal.title
Advanced Electronic Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.201700506  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201700506