Mostrar el registro sencillo del ítem
dc.contributor.author
Palumbo, Félix Roberto Mario
dc.contributor.author
Liang, Xianhu
dc.contributor.author
Yuan, Bin
dc.contributor.author
Shi, Yuanyuan
dc.contributor.author
Hui, Fei
dc.contributor.author
Villena, Marco A.
dc.contributor.author
Lanza, Mario
dc.date.available
2021-06-18T16:16:17Z
dc.date.issued
2018-03
dc.identifier.citation
Palumbo, Félix Roberto Mario; Liang, Xianhu; Yuan, Bin; Shi, Yuanyuan; Hui, Fei; et al.; Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric; Blackwell Publishing; Advanced Electronic Materials; 4; 3; 3-2018; 1-8
dc.identifier.uri
http://hdl.handle.net/11336/134568
dc.description.abstract
Multilayer hexagonal boron nitride (h-BN) is an insulating 2D material that shows good interaction with graphene and MoS2, and it is considered a very promising dielectric for future 2D-materials-based electronic devices. Previous studies analyzed the dielectric properties of thick (>10 nm) mechanically exfoliated h-BN nanoflakes (diameter < 20 μm) via conductive atomic force microscopy and applying very high voltages (>10 V); however, these methods are not scalable. In this work, the first device-level reliability study of large area h-BN dielectric stacks (grown via chemical vapor deposition) is presented, and the complete dielectric breakdown (BD) process is described. The experiments and calculations indicate that the BD process in metal/h-BN/metal devices starts with a progressive current increase across the h-BN stack until current densities up to 0.1 A cm−2 are reached. After that, the currents increase by sudden steps, which can be large (>1 order of magnitude, related to the BD of one/few h-BN layers) or small (<1 order of magnitude, related to the lateral propagation of the BD). The bimodal BD process of h-BN here presented (which cannot be detected via conductive atomic force microscopy) is essential to understand the reliability of 2D-material-based electronic devices using h-BN as dielectric.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Blackwell Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHARGE TRAPPING
dc.subject
DIELECTRIC BREAKDOWN (BD)
dc.subject
HEXAGONAL BORON NITRIDE (H-BN)
dc.subject
RELIABILITY
dc.subject
STRESS-INDUCED LEAKAGE CURRENT (SILC)
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-06-16T15:18:38Z
dc.identifier.eissn
2199-160X
dc.journal.volume
4
dc.journal.number
3
dc.journal.pagination
1-8
dc.journal.pais
Alemania
dc.description.fil
Fil: Palumbo, Félix Roberto Mario. Comision Nacional de Energia Atomica. Gerencia de Area de Investigaciones y Aplicaciones No Nucleares (cac).; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Liang, Xianhu. Soochow University; China
dc.description.fil
Fil: Yuan, Bin. Soochow University; China
dc.description.fil
Fil: Shi, Yuanyuan. University of Stanford; Estados Unidos
dc.description.fil
Fil: Hui, Fei. University of Cambridge; Reino Unido
dc.description.fil
Fil: Villena, Marco A.. Soochow University; China
dc.description.fil
Fil: Lanza, Mario. Soochow University; China
dc.journal.title
Advanced Electronic Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.201700506
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201700506
Archivos asociados