Mostrar el registro sencillo del ítem

dc.contributor.author
Manassero, María Constanza  
dc.contributor.author
Afonso, Juan Carlos  
dc.contributor.author
Zyserman, Fabio Ivan  
dc.contributor.author
Zlotnik, Sergio  
dc.contributor.author
Fomin, I.  
dc.date.available
2021-06-18T13:39:06Z  
dc.date.issued
2020-12  
dc.identifier.citation
Manassero, María Constanza; Afonso, Juan Carlos; Zyserman, Fabio Ivan; Zlotnik, Sergio; Fomin, I.; A reduced order approach for probabilistic inversions of 3-D magnetotelluric data I: general formulation; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 223; 3; 12-2020; 1837-1863  
dc.identifier.issn
0956-540X  
dc.identifier.uri
http://hdl.handle.net/11336/134549  
dc.description.abstract
Simulation-based probabilistic inversions of 3-D magnetotelluric (MT) data are arguably the best option to deal with the nonlinearity and non-uniqueness of the MT problem. However, the computational cost associated with the modelling of 3-D MT data has so far precluded the community from adopting and/or pursuing full probabilistic inversions of large MT data sets. In this contribution, we present a novel and general inversion framework, driven by Markov Chain Monte Carlo (MCMC) algorithms, which combines (i) an efficient parallel-in-parallel structure to solve the 3-D forward problem, (ii) a reduced order technique to create fast and accurate surrogate models of the forward problem and (iii) adaptive strategies for both the MCMC algorithm and the surrogate model. In particular, and contrary to traditional implementations, the adaptation of the surrogate is integrated into the MCMC inversion. This circumvents the need of costly offline stages to build the surrogate and further increases the overall efficiency of the method. We demonstrate the feasibility and performance of our approach to invert for large-scale conductivity structures with two numerical examples using different parametrizations and dimensionalities. In both cases, we report staggering gains in computational efficiency compared to traditional MCMC implementations. Our method finally removes the main bottleneck of probabilistic inversions of 3-D MT data and opens up new opportunities for both stand-alone MT inversions and multi-observable joint inversions for the physical state of the Earth's interior.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPOSITION AND STRUCTURE OF THE MANTLE  
dc.subject
INVERSE THEORY  
dc.subject
MAGNETOTELLURICS  
dc.subject
NUMERICAL APPROXIMATIONS AND ANALYSIS  
dc.subject
NUMERICAL MODELLING  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A reduced order approach for probabilistic inversions of 3-D magnetotelluric data I: general formulation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-04T17:04:27Z  
dc.journal.volume
223  
dc.journal.number
3  
dc.journal.pagination
1837-1863  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Manassero, María Constanza. Macquarie University; Australia  
dc.description.fil
Fil: Afonso, Juan Carlos. Macquarie University; Australia  
dc.description.fil
Fil: Zyserman, Fabio Ivan. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Zlotnik, Sergio. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Fomin, I.. Macquarie University; Australia  
dc.journal.title
Geophysical Journal International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/223/3/1837/5900140  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/gji/ggaa415