Mostrar el registro sencillo del ítem

dc.contributor.author
Evensen, Geir  
dc.contributor.author
Amezcua, Javier  
dc.contributor.author
Bocquet, Marc  
dc.contributor.author
Carrassi, Alberto  
dc.contributor.author
Farchi, Alban  
dc.contributor.author
Fowler, Alison  
dc.contributor.author
Houtekamer, Pieter L.  
dc.contributor.author
Jones, Christopher K.  
dc.contributor.author
de Morales, Rafael J.  
dc.contributor.author
Pulido, Manuel Arturo  
dc.contributor.author
Sampson, Christian  
dc.contributor.author
Vossepoel, Femke C.  
dc.date.available
2021-06-11T16:46:59Z  
dc.date.issued
2021-01  
dc.identifier.citation
Evensen, Geir; Amezcua, Javier; Bocquet, Marc; Carrassi, Alberto; Farchi, Alban; et al.; An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation; American Institute of Mathematical Sciences; Foundations of Data Science; 3; 2021; 1-2021; 1-65  
dc.identifier.issn
2639-8001  
dc.identifier.uri
http://hdl.handle.net/11336/133699  
dc.description.abstract
This work demonstrates the efficiency of using iterative ensemble smoothers to estimate the parameters of an SEIR model. We have extended a standard SEIR model with age-classes and compartments of sick, hospitalized, and dead. The data conditioned on are the daily numbers of accumulated deaths and the number of hospitalized. Also, it is possible to condition the model on the number of cases obtained from testing. We start from a wide prior distribution for the model parameters; then, the ensemble conditioning leads to a posterior ensemble of estimated parameters yielding model predictions in close agreement with the observations. The updated ensemble of model simulations has predictive capabilities and include uncertainty estimates. In particular, we estimate the effective reproductive number as a function of time, and we can assess the impact of different intervention measures. By starting from the updated set of model parameters, we can make accurate short-term predictions of the epidemic development assuming knowledge of the future effective reproductive number. Also, the model system allows for the computation of long-term scenarios of the epidemic under different assumptions. We have applied the model system on data sets from several countries, i.e., the four European countries Norway, England, The Netherlands, and France; the province of Quebec in Canada; the South American countries Argentina and Brazil; and the four US states Alabama, North Carolina, California, and New York. These countries and states all have vastly different developments of the epidemic, and we could accurately model the SARS-CoV-2 outbreak in all of them. We realize that more complex models, e.g., with regional compartments, may be desirable, and we suggest that the approach used here should be applicable also for these models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
SARS-COV-2  
dc.subject
ENSEMBLE DATA ASSIMILATION  
dc.subject
ESMDA  
dc.subject
MODEL CALIBRATION  
dc.subject
COVID-19  
dc.subject.classification
Enfermedades Infecciosas  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-10T19:27:38Z  
dc.identifier.eissn
2639-8001  
dc.journal.volume
3  
dc.journal.number
2021  
dc.journal.pagination
1-65  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Evensen, Geir. University of Bergen; Noruega  
dc.description.fil
Fil: Amezcua, Javier. University of Reading; Reino Unido  
dc.description.fil
Fil: Bocquet, Marc. Universite de Paris; Francia  
dc.description.fil
Fil: Carrassi, Alberto. University of Reading; Reino Unido. University of Utrecht; Países Bajos  
dc.description.fil
Fil: Farchi, Alban. Universite de Paris; Francia  
dc.description.fil
Fil: Fowler, Alison. University of Reading; Reino Unido  
dc.description.fil
Fil: Houtekamer, Pieter L.. Environment and Climate Change Canada Dorval; Canadá  
dc.description.fil
Fil: Jones, Christopher K.. University of North Carolina; Estados Unidos  
dc.description.fil
Fil: de Morales, Rafael J.. Delft University of Technology; Países Bajos  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.description.fil
Fil: Sampson, Christian. University of North Carolina; Estados Unidos  
dc.description.fil
Fil: Vossepoel, Femke C.. Delft University of Technology; Países Bajos  
dc.journal.title
Foundations of Data Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/article/doi/10.3934/fods.2021001  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/fods.2021001