Mostrar el registro sencillo del ítem

dc.contributor.author
Clementi, Luis Alberto  
dc.contributor.author
Vega, Jorge Ruben  
dc.contributor.author
Gugliotta, Luis Marcelino  
dc.contributor.author
Orlande, Helciio R. B.  
dc.date.available
2017-02-24T13:40:42Z  
dc.date.issued
2011-05  
dc.identifier.citation
Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.; A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 107; 1; 5-2011; 165-173  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/13350  
dc.description.abstract
A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Latex  
dc.subject
Particle Size Distribution  
dc.subject
Dynamic Light Scattering  
dc.subject
Inverse Problem  
dc.subject
Regularization Techniques  
dc.subject
Bayesian Method  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-17T13:26:12Z  
dc.journal.volume
107  
dc.journal.number
1  
dc.journal.pagination
165-173  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Clementi, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina  
dc.description.fil
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina  
dc.description.fil
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina  
dc.description.fil
Fil: Orlande, Helciio R. B.. Federal University of Rio de Janeiro; Brasil  
dc.journal.title
Chemometrics And Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2011.03.003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743911000530