Mostrar el registro sencillo del ítem
dc.contributor.author
Clementi, Luis Alberto
dc.contributor.author
Vega, Jorge Ruben
dc.contributor.author
Gugliotta, Luis Marcelino
dc.contributor.author
Orlande, Helciio R. B.
dc.date.available
2017-02-24T13:40:42Z
dc.date.issued
2011-05
dc.identifier.citation
Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.; A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 107; 1; 5-2011; 165-173
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/13350
dc.description.abstract
A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Latex
dc.subject
Particle Size Distribution
dc.subject
Dynamic Light Scattering
dc.subject
Inverse Problem
dc.subject
Regularization Techniques
dc.subject
Bayesian Method
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-02-17T13:26:12Z
dc.journal.volume
107
dc.journal.number
1
dc.journal.pagination
165-173
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Clementi, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina
dc.description.fil
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina
dc.description.fil
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
dc.description.fil
Fil: Orlande, Helciio R. B.. Federal University of Rio de Janeiro; Brasil
dc.journal.title
Chemometrics And Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2011.03.003
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743911000530
Archivos asociados