Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicción de fracasos en implantes dentales mediante la integración de múltiples clasificadores

Título: Predicting dental implant failures by integrating multiple classifiers
Ganz, Nancy BeatrizIcon ; Ares, Alicia EstherIcon ; Kuna, Horacio Daniel
Fecha de publicación: 11/2020
Editorial: Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Centro de Investigación y Desarrollo Tecnológico
Revista: Revista de Ciencia y Tecnología
ISSN: 0329-8922
e-ISSN: 1851-7587
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería de los Materiales

Resumen

 
El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina y proponer un procedimiento validado por expertos humanos. El modelo abarca la combinación de los clasificadores: Random Forest, C-Support Vector, K-Nearest Neighbors, Multinomial Naive Bayes y Multi-layer Perceptron. La integración de los modelos se realiza con el weighted soft voting method. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. Los resultados arrojados del enfoque propuesto sobre el conjunto de datos de implantes dentales, es validado con el desempeño en la clasificación por expertos humanos. Nuestro enfoque logra un porcentaje de acierto del 93% de casos correctamente identificados, mientras que los expertos humanos consiguen un 87% de precisión.
 
The field of data science has made many advances in the application and development of techniques in several aspects of the health sector, such as in disease prediction, image classification, risk identification and risk reduction. Based on this, the objectives of this work were to investigate the benefit of using multiple classification algorithms to predict dental implant failures in patients from Misiones province, Argentina, and to propose a procedure validated by human experts. The model used the integration of several types of classifiers.The experimentation was performed with four data sets: a data set of dental implants made for the case study, an artificially generated data set, and two other data sets obtained from different data repositories. The results of the approach proposed were validated by the performance in classification made by human experts. Our approach achieved a success rate of 93% of correctly identified cases, whereas human experts achieved 87% accuracy. Based on this, we can argue that multi-classifier systems are a good approach to predict dental implant failures.
 
Palabras clave: COMBINACION DE CLASIFICADORES , CLASIFICACIÓN , IMPLANTES DENTALES , PREDICCIÓN DE FRACASOS , APRENDIZAJE AUTOMATICO
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 634.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133501
URL: https://dialnet.unirioja.es/servlet/articulo?codigo=7687130
Colecciones
Articulos(IMAM)
Articulos de INST.DE MATERIALES DE MISIONES
Citación
Ganz, Nancy Beatriz; Ares, Alicia Esther; Kuna, Horacio Daniel; Predicción de fracasos en implantes dentales mediante la integración de múltiples clasificadores; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Centro de Investigación y Desarrollo Tecnológico; Revista de Ciencia y Tecnología; 34; 1; 11-2020; 13-23
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES