Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage

Garcia Reiriz, Alejandro GabrielIcon ; Damiani, Patricia Cecilia; Olivieri, Alejandro CesarIcon
Fecha de publicación: 02/2010
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

A new second-order multivariate calibration model is presented which allows one to process matrix data showing a non-linear relationship between signal and concentration, and achieving the important second-order advantage. The latter property permits analyte quantitation even in the presence of unexpected sample components, i.e., those not present in the calibration set. The model is based on a combination of residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis functions. Simulations concerning two ideal systems are analyzed: one where the signal-concentration relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The results are favorably compared with those provided by several artificial neural network approaches. Two experimental systems are also studied, involving the analysis of: 1) the lipid degradation product malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2) the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for these experimental cases are also encouraging.
Palabras clave: KERNEL PARTIAL LEAST-SQUARES , RESIDUAL BILINEARIZATION , SECOND-ORDER ADVANTAGE , SECOND-ORDER CALIBRATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 842.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133271
URL: https://www.sciencedirect.com/science/article/abs/pii/S0169743909002093
DOI: http://dx.doi.org/10.1016/j.chemolab.2009.11.009
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 100; 2; 2-2010; 127-135
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES