Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Conflation of expert and crowd reference data to validate global binary thematic maps

Waldner, François; Schucknecht, Anne; Lesiv, Myroslava; Gallego, Javier; See, Linda; Pérez Hoyos, Ana; d'Andrimont, Raphaël; de Maet, Thomas; Bayas, Juan Carlos Laso; Fritz, Steffen; Leo, Olivier; Kerdiles, Hervé; Díez, Mónica; Van Tricht, Kristof; Gilliams, Sven; Shelestov, Andrii; Lavreniuk, Mykola; Simões, Margareth; Ferraz, Rodrigo; Bellón, Beatriz; Bégué, Agnès; Hazeu, Gerard; Stonacek, Vaclav; Kolomaznik, Jan; Misurec, Jan; Verón, Santiago RamónIcon ; de Abelleyra, Diego; Plotnikov, Dmitry; Mingyong, Li; Singha, Mrinal; Patil, Prashant; Zhang, Miao; Defourny, Pierre
Fecha de publicación: 02/2019
Editorial: Elsevier Science Inc
Revista: Remote Sensing of Environment
ISSN: 0034-4257
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

With the unprecedented availability of satellite data and the rise of global binary maps, the collection of shared reference data sets should be fostered to allow systematic product benchmarking and validation. Authoritative global reference data are generally collected by experts with regional knowledge through photo-interpretation. During the last decade, crowdsourcing has emerged as an attractive alternative for rapid and relatively cheap data collection, beckoning the increasingly relevant question: can these two data sources be combined to validate thematic maps? In this article, we compared expert and crowd data and assessed their relative agreement for cropland identification, a land cover class often reported as difficult to map. Results indicate that observations from experts and volunteers could be partially conflated provided that several consistency checks are performed. We propose that conflation, i.e., replacement and augmentation of expert observations by crowdsourced observations, should be carried out both at the sampling and data analytics levels. The latter allows to evaluate the reliability of crowdsourced observations and to decide whether they should be conflated or discarded. We demonstrate that the standard deviation of crowdsourced contributions is a simple yet robust indicator of reliability which can effectively inform conflation. Following this criterion, we found that 70% of the expert observations could be crowdsourced with little to no effect on accuracy estimates, allowing a strategic reallocation of the spared expert effort to increase the reliability of the remaining 30% at no additional cost. Finally, we provide a collection of evidence-based recommendations for future hybrid reference data collection campaigns.
Palabras clave: ACCURACY ASSESSMENT , CROWDSOURCING , DATA QUALITY , PHOTO-INTERPRETATION , STRATIFIED SYSTEMATIC SAMPLING , VOLUNTEERED GEOGRAPHIC INFORMATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.652Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133169
URL: https://www.sciencedirect.com/science/article/pii/S0034425718305017
DOI: http://dx.doi.org/10.1016/j.rse.2018.10.039
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Waldner, François; Schucknecht, Anne; Lesiv, Myroslava; Gallego, Javier; See, Linda; et al.; Conflation of expert and crowd reference data to validate global binary thematic maps; Elsevier Science Inc; Remote Sensing of Environment; 221; 2-2019; 235-246
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES