Mostrar el registro sencillo del ítem

dc.contributor.author
Ibarrola, Francisco Javier  
dc.contributor.author
Spies, Ruben Daniel  
dc.date.available
2017-02-22T18:27:32Z  
dc.date.issued
2014-10  
dc.identifier.citation
Ibarrola, Francisco Javier; Spies, Ruben Daniel; Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation regularization; Scientific Online; SOP Transactions on Applied Mathematics; 1; 3; 10-2014; 59-75  
dc.identifier.issn
2373-8472  
dc.identifier.uri
http://hdl.handle.net/11336/13315  
dc.description.abstract
The problem of restoring a signal or image is often tantamount to approximating the solution of a linear inverse ill-posed problem. In order to find such an approximation one might regularize the problem by penalizing variations on the estimated solution. Among the wide variety of methods available to perform this penalization, the most commonly used is the Tikhonov-Phillips regularization, which is appropriate when the sought signal or image is expected to be smooth, but it results unsuitable whenever preservation of discontinuities and edges is an important matter. Nonetheless, there are other methods with edge preserving properties, such as bounded variation (BV) regularization. However, these methods tend to produce piecewise constant solutions showing the so called “staircasing effect” and their numerical implementations entail great computational effort and cost. In order to overcome these obstacles, we consider a mixed weighted Tikhonov and anisotropic BV regularization method to obtain improved restorations and we use a half-quadratic approach to construct highly efficient numerical algorithms. Several numerical results in signal and image restoration problems are presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Scientific Online  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Inverse Problem  
dc.subject
Ill-Posedness  
dc.subject
Regularization  
dc.subject
Half-Quadratic  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation regularization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-23T20:13:15Z  
dc.identifier.eissn
2373-8480  
dc.journal.volume
1  
dc.journal.number
3  
dc.journal.pagination
59-75  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ibarrola, Francisco Javier. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.journal.title
SOP Transactions on Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.scipublish.com/journals/AM/papers/921  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.15764/AM.2014.03007