Artículo
A model of glucocorticoid receptor interaction with coregulators predicts transcriptional regulation of target genes
Monczor, Federico
; Chatzopoulou, Antonia; Zappia, Carlos Daniel
; Houtman, René; Meijer, Onno C.; Fitzsimons, Carlos P.
Fecha de publicación:
03/2019
Editorial:
Frontiers Media S.A.
Revista:
Frontiers in Pharmacology
ISSN:
1663-9812
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ININFA)
Articulos de INST.DE INVEST.FARMACOLOGICAS (I)
Articulos de INST.DE INVEST.FARMACOLOGICAS (I)
Citación
Monczor, Federico; Chatzopoulou, Antonia; Zappia, Carlos Daniel; Houtman, René; Meijer, Onno C.; et al.; A model of glucocorticoid receptor interaction with coregulators predicts transcriptional regulation of target genes; Frontiers Media S.A.; Frontiers in Pharmacology; 10; 3-2019; 1-17
Compartir
Altmétricas