Mostrar el registro sencillo del ítem

dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.contributor.other
Bhattacharyya, Santanu  
dc.contributor.other
Dutta, P.  
dc.date.available
2021-06-01T03:30:54Z  
dc.date.issued
2013  
dc.identifier.citation
Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Schedulers based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments; International Gemological Institute; 2013; 410-448  
dc.identifier.isbn
9781466625181  
dc.identifier.uri
http://hdl.handle.net/11336/132875  
dc.description.abstract
Scientists and engineers are more and more faced to the need of computational power to satisfy the ever-increasing resource intensive nature of their experiments. An example of these experiments is Parameter Sweep Experiments (PSE). PSEs involve many independent jobs, since the experiments are executed under multiple initial configurations (input parameter values) several times. In recent years, technologies such as Grid Computing and Cloud Computing have been used for running such experiments. However, for PSEs to be executed efficiently, it is necessary to develop effective scheduling strategies to allocate jobs to machines and reduce the associated processing times. Broadly, the job scheduling problem is known to be NP-complete, and thus many variants based on approximation techniques have been developed. In this work, we conducted a survey of different scheduling algorithms based on Swarm Intelligence (SI), and more precisely Ant Colony Optimization (ACO), which is the most popular SI technique, to solve the problem of job scheduling with PSEs on different distributed computing environments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Gemological Institute  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PARAMETER SWEEP  
dc.subject
JOB SCHEDULING  
dc.subject
GRID COMPUTING  
dc.subject
CLOUD COMPUTING  
dc.subject
SWARM INTELLIGENCE  
dc.subject
ANT COLONY OPTIMIZATION  
dc.subject
MAKESPAN  
dc.subject
LOAD BALANCING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Schedulers based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-01-27T20:22:36Z  
dc.journal.pagination
410-448  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Idehesi-inst Mult Est Soc Contem (uncuyo); Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4018/978-1-4666-2518-1.ch016  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/gateway/chapter/72502  
dc.conicet.paginas
785  
dc.source.titulo
Handbook of Research on Computational Intelligence for Engineering, Science and Business