Mostrar el registro sencillo del ítem
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.contributor.other
Bhattacharyya, Santanu
dc.contributor.other
Dutta, P.
dc.date.available
2021-06-01T03:30:54Z
dc.date.issued
2013
dc.identifier.citation
Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Schedulers based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments; International Gemological Institute; 2013; 410-448
dc.identifier.isbn
9781466625181
dc.identifier.uri
http://hdl.handle.net/11336/132875
dc.description.abstract
Scientists and engineers are more and more faced to the need of computational power to satisfy the ever-increasing resource intensive nature of their experiments. An example of these experiments is Parameter Sweep Experiments (PSE). PSEs involve many independent jobs, since the experiments are executed under multiple initial configurations (input parameter values) several times. In recent years, technologies such as Grid Computing and Cloud Computing have been used for running such experiments. However, for PSEs to be executed efficiently, it is necessary to develop effective scheduling strategies to allocate jobs to machines and reduce the associated processing times. Broadly, the job scheduling problem is known to be NP-complete, and thus many variants based on approximation techniques have been developed. In this work, we conducted a survey of different scheduling algorithms based on Swarm Intelligence (SI), and more precisely Ant Colony Optimization (ACO), which is the most popular SI technique, to solve the problem of job scheduling with PSEs on different distributed computing environments.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Gemological Institute
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PARAMETER SWEEP
dc.subject
JOB SCHEDULING
dc.subject
GRID COMPUTING
dc.subject
CLOUD COMPUTING
dc.subject
SWARM INTELLIGENCE
dc.subject
ANT COLONY OPTIMIZATION
dc.subject
MAKESPAN
dc.subject
LOAD BALANCING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Schedulers based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-01-27T20:22:36Z
dc.journal.pagination
410-448
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Idehesi-inst Mult Est Soc Contem (uncuyo); Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4018/978-1-4666-2518-1.ch016
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/gateway/chapter/72502
dc.conicet.paginas
785
dc.source.titulo
Handbook of Research on Computational Intelligence for Engineering, Science and Business
Archivos asociados