Mostrar el registro sencillo del ítem

dc.contributor.author
Cappa, Eduardo Pablo  
dc.contributor.author
de Lima, Bruno Marco  
dc.contributor.author
Silva Junior, Orzenil B. da  
dc.contributor.author
Garcia, Carla C.  
dc.contributor.author
Mansfield, Shawn D.  
dc.contributor.author
Grattapaglia, Dario  
dc.date.available
2021-05-28T19:41:49Z  
dc.date.issued
2019-07  
dc.identifier.citation
Cappa, Eduardo Pablo; de Lima, Bruno Marco; Silva Junior, Orzenil B. da ; Garcia, Carla C.; Mansfield, Shawn D.; et al.; Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP; Elsevier Ireland; Plant Science; 284; 7-2019; 9-15  
dc.identifier.issn
0168-9452  
dc.identifier.uri
http://hdl.handle.net/11336/132791  
dc.description.abstract
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach (ssGBLUP) allows genomic prediction to take into account both genotyped and non-genotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Ireland  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACCURACY  
dc.subject
ADDITIONAL PHENOTYPIC INFORMATION  
dc.subject
BIAS  
dc.subject
EUCALYPTUS  
dc.subject
SINGLE-STEP GENOMIC EVALUATION  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-05-27T12:39:22Z  
dc.journal.volume
284  
dc.journal.pagination
9-15  
dc.journal.pais
Irlanda  
dc.description.fil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: de Lima, Bruno Marco. Fibria S.A. Technology Center; Brasil  
dc.description.fil
Fil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil  
dc.description.fil
Fil: Garcia, Carla C.. International Paper of Brazil; Brasil  
dc.description.fil
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá  
dc.description.fil
Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil. Universidade Católica de Brasília. Genomic Sciences Program; Brasil  
dc.journal.title
Plant Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168945218314134  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.plantsci.2019.03.017