Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

A Comparative Study of Machine Learning Techniques for Gesture Recognition using Kinect

Título del libro: Handbook of Research on Human-Computer Interfaces, Developments, and Applications

Ibañez, Rodrigo; Soria, AlvaroIcon ; Teyseyre, Alfredo RaulIcon ; Berdun, Luis SebastianIcon ; Campo, Marcelo RicardoIcon
Otros responsables: Rodrigues, João; Cardoso, Pedro; Monteiro, Jânio; Figueiredo, Mauro
Fecha de publicación: 2016
Editorial: Igi Publ
ISBN: 9781522504351
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Progress and technological innovation achieved in recent years, particularly in the area of entertainment and games, have promoted the creation of more natural and intuitive human-computer interfaces. Forexample, natural interaction devices such as Microsoft Kinect allow users to explore a more expressive way of human-computer communication by recognizing body gestures. In this context, several SupervisedMachine Learning techniques have been proposed to recognize gestures. However, scarce research works have focused on a comparative study of the behavior of these techniques. Therefore, this chapter presentsan evaluation of 4 Machine Learning techniques by using the Microsoft Research Cambridge (MSRC-12) Kinect gesture dataset, which involves 30 people performing 12 different gestures. Accuracy was evaluated with different techniques obtaining correct-recognition rates close to 100% in some results. Briefly, the experiments performed in this chapter are likely to provide new insights into the application of Machine Learning technique to facilitate the task of gesture recognition.
Palabras clave: MACHINE LEARNING , KINECT , GESTURE RECOGNITION , SKELETON DATA
Ver el registro completo
 
Archivos asociados
Tamaño: 8Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/132738
URL: http://www.igi-global.com/book/handbook-research-human-computer-interfaces/14692
Colecciones
Capítulos de libros(ISISTAN)
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Ibañez, Rodrigo; Soria, Alvaro; Teyseyre, Alfredo Raul; Berdun, Luis Sebastian; Campo, Marcelo Ricardo; A Comparative Study of Machine Learning Techniques for Gesture Recognition using Kinect; Igi Publ; 2016; 1-22
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES