Capítulo de Libro
A Comparative Study of Machine Learning Techniques for Gesture Recognition using Kinect
Título del libro: Handbook of Research on Human-Computer Interfaces, Developments, and Applications
Ibañez, Rodrigo; Soria, Alvaro
; Teyseyre, Alfredo Raul
; Berdun, Luis Sebastian
; Campo, Marcelo Ricardo
Fecha de publicación:
2016
Editorial:
Igi Publ
ISBN:
9781522504351
Idioma:
Inglés
Clasificación temática:
Resumen
Progress and technological innovation achieved in recent years, particularly in the area of entertainment and games, have promoted the creation of more natural and intuitive human-computer interfaces. Forexample, natural interaction devices such as Microsoft Kinect allow users to explore a more expressive way of human-computer communication by recognizing body gestures. In this context, several SupervisedMachine Learning techniques have been proposed to recognize gestures. However, scarce research works have focused on a comparative study of the behavior of these techniques. Therefore, this chapter presentsan evaluation of 4 Machine Learning techniques by using the Microsoft Research Cambridge (MSRC-12) Kinect gesture dataset, which involves 30 people performing 12 different gestures. Accuracy was evaluated with different techniques obtaining correct-recognition rates close to 100% in some results. Briefly, the experiments performed in this chapter are likely to provide new insights into the application of Machine Learning technique to facilitate the task of gesture recognition.
Palabras clave:
MACHINE LEARNING
,
KINECT
,
GESTURE RECOGNITION
,
SKELETON DATA
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(ISISTAN)
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Ibañez, Rodrigo; Soria, Alvaro; Teyseyre, Alfredo Raul; Berdun, Luis Sebastian; Campo, Marcelo Ricardo; A Comparative Study of Machine Learning Techniques for Gesture Recognition using Kinect; Igi Publ; 2016; 1-22
Compartir