Artículo
The subvariety of commutative residuated lattices represented by twist-products
Fecha de publicación:
03/2014
Editorial:
Springer
Revista:
Algebra Universalis
ISSN:
0002-5240
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety KK of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of KK , a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in KK , and we analyze the subvariety of representable algebras in KK . Finally, we consider some specific class of bounded integral commutative residuated lattices GG , and for each fixed element L∈GL∈G , we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; The subvariety of commutative residuated lattices represented by twist-products; Springer; Algebra Universalis; 71; 1; 3-2014; 5-22
Compartir
Altmétricas