Mostrar el registro sencillo del ítem

dc.contributor.author
Aminmansour, Farzane  
dc.contributor.author
Patterson, Andrew  
dc.contributor.author
Le, Lei  
dc.contributor.author
Peng, Yisu  
dc.contributor.author
Mitchell, Daniel  
dc.contributor.author
Pestilli, Franco  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Greiner, Russell  
dc.contributor.author
White, Martha Carolina  
dc.contributor.other
Wallach, H.  
dc.contributor.other
Larochelle, H.  
dc.contributor.other
Beygelzimer, A.  
dc.contributor.other
d'Alché Buc, F.  
dc.contributor.other
Fox, E.  
dc.contributor.other
Garnett, R.  
dc.date.available
2021-05-25T22:41:08Z  
dc.date.issued
2019  
dc.identifier.citation
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization; Thirty-third Conference on Neural Information Processing Systems; Vancouver; Canadá; 2019; 1-22  
dc.identifier.uri
http://hdl.handle.net/11336/132537  
dc.description.abstract
Mapping structural brain connectomes for living human brains typically requires expert analysis and rule-based models on diffusion-weighted magnetic resonance imaging. A data-driven approach, however, could overcome limitations in such rulebased approaches and improve precision mappings for individuals. In this work, we explore a framework that facilitates applying learning algorithms to automatically extract brain connectomes. Using a tensor encoding, we design an objective with a group-regularizer that prefers biologically plausible fascicle structure. We show that the objective is convex and has unique solutions, ensuring identifiable connectomes for an individual. We develop an efficient optimization strategy for this extremely high-dimensional sparse problem, by reducing the number of parameters using a greedy algorithm designed specifically for the problem. We show that this greedy algorithm significantly improves on a standard greedy algorithm, called Orthogonal Matching Pursuit. We conclude with an analysis of the solutions found by our method, showing we can accurately reconstruct the diffusion information while maintaining contiguous fascicles with smooth direction changes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Neural Information Processing Systems  
dc.relation
https://papers.nips.cc/paper/2019/hash/0bfce127947574733b19da0f30739fcd-Abstract.html  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Connectome  
dc.subject
Sparse representation  
dc.subject
Diffusion MRI  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2021-04-27T13:35:37Z  
dc.journal.number
32  
dc.journal.pagination
1-22  
dc.journal.pais
Canadá  
dc.journal.ciudad
Vancouver  
dc.description.fil
Fil: Aminmansour, Farzane. University of Alberta; Canadá  
dc.description.fil
Fil: Patterson, Andrew. University of Alberta; Canadá  
dc.description.fil
Fil: Le, Lei. Indiana University; Estados Unidos  
dc.description.fil
Fil: Peng, Yisu. Indiana University; Estados Unidos  
dc.description.fil
Fil: Mitchell, Daniel. University of Alberta; Canadá  
dc.description.fil
Fil: Pestilli, Franco. Indiana University; Estados Unidos  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Greiner, Russell. University of Alberta; Canadá  
dc.description.fil
Fil: White, Martha Carolina. University of Alberta; Canadá  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://nips.cc/Conferences/2019/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper/2019  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
Thirty-third Conference on Neural Information Processing Systems  
dc.date.evento
2019-12-08  
dc.description.ciudadEvento
Vancouver  
dc.description.paisEvento
Canadá  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Neural Information Processing Systems  
dc.source.libro
Advances in Neural Information Processing Systems (NeurIPS 2019)  
dc.date.eventoHasta
2019-12-14  
dc.type
Conferencia