Mostrar el registro sencillo del ítem
dc.contributor.author
Aminmansour, Farzane
dc.contributor.author
Patterson, Andrew
dc.contributor.author
Le, Lei
dc.contributor.author
Peng, Yisu
dc.contributor.author
Mitchell, Daniel
dc.contributor.author
Pestilli, Franco
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Greiner, Russell
dc.contributor.author
White, Martha Carolina
dc.contributor.other
Wallach, H.
dc.contributor.other
Larochelle, H.
dc.contributor.other
Beygelzimer, A.
dc.contributor.other
d'Alché Buc, F.
dc.contributor.other
Fox, E.
dc.contributor.other
Garnett, R.
dc.date.available
2021-05-25T22:41:08Z
dc.date.issued
2019
dc.identifier.citation
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization; Thirty-third Conference on Neural Information Processing Systems; Vancouver; Canadá; 2019; 1-22
dc.identifier.uri
http://hdl.handle.net/11336/132537
dc.description.abstract
Mapping structural brain connectomes for living human brains typically requires expert analysis and rule-based models on diffusion-weighted magnetic resonance imaging. A data-driven approach, however, could overcome limitations in such rulebased approaches and improve precision mappings for individuals. In this work, we explore a framework that facilitates applying learning algorithms to automatically extract brain connectomes. Using a tensor encoding, we design an objective with a group-regularizer that prefers biologically plausible fascicle structure. We show that the objective is convex and has unique solutions, ensuring identifiable connectomes for an individual. We develop an efficient optimization strategy for this extremely high-dimensional sparse problem, by reducing the number of parameters using a greedy algorithm designed specifically for the problem. We show that this greedy algorithm significantly improves on a standard greedy algorithm, called Orthogonal Matching Pursuit. We conclude with an analysis of the solutions found by our method, showing we can accurately reconstruct the diffusion information while maintaining contiguous fascicles with smooth direction changes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Neural Information Processing Systems
dc.relation
https://papers.nips.cc/paper/2019/hash/0bfce127947574733b19da0f30739fcd-Abstract.html
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Connectome
dc.subject
Sparse representation
dc.subject
Diffusion MRI
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-04-27T13:35:37Z
dc.journal.number
32
dc.journal.pagination
1-22
dc.journal.pais
Canadá
dc.journal.ciudad
Vancouver
dc.description.fil
Fil: Aminmansour, Farzane. University of Alberta; Canadá
dc.description.fil
Fil: Patterson, Andrew. University of Alberta; Canadá
dc.description.fil
Fil: Le, Lei. Indiana University; Estados Unidos
dc.description.fil
Fil: Peng, Yisu. Indiana University; Estados Unidos
dc.description.fil
Fil: Mitchell, Daniel. University of Alberta; Canadá
dc.description.fil
Fil: Pestilli, Franco. Indiana University; Estados Unidos
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Greiner, Russell. University of Alberta; Canadá
dc.description.fil
Fil: White, Martha Carolina. University of Alberta; Canadá
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://nips.cc/Conferences/2019/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper/2019
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
Thirty-third Conference on Neural Information Processing Systems
dc.date.evento
2019-12-08
dc.description.ciudadEvento
Vancouver
dc.description.paisEvento
Canadá
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Neural Information Processing Systems
dc.source.libro
Advances in Neural Information Processing Systems (NeurIPS 2019)
dc.date.eventoHasta
2019-12-14
dc.type
Conferencia
Archivos asociados