Mostrar el registro sencillo del ítem
dc.contributor.author
Caffaratti, Gabriel Dario
dc.contributor.author
Marchetta, Martin G.
dc.contributor.author
Forradellas, Raymundo Quilez
dc.date.available
2021-05-13T11:36:25Z
dc.date.issued
2019-02
dc.identifier.citation
Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-38
dc.identifier.issn
1137-3601
dc.identifier.uri
http://hdl.handle.net/11336/131942
dc.description.abstract
Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Asociacion Espanola de Inteligencia Artificial
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
ARTIFICIAL VISION
dc.subject
DEEP LEARNING
dc.subject
DISPARITY MAPS
dc.subject
SQUEEZE NETS
dc.subject
STEREO MATCHING
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Stereo matching through squeeze deep neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-16T20:33:02Z
dc.identifier.eissn
1988-3064
dc.journal.volume
22
dc.journal.number
63
dc.journal.pagination
16-38
dc.journal.pais
España
dc.description.fil
Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
dc.journal.title
Inteligencia Artificial
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4114/intartif.vol22iss63pp16-38
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/254
Archivos asociados