Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

A Logic Programming Approach to Predict Enterprise-Targeted Cyberattacks

Título del libro: Data Science in Cybersecurity and Cyberthreat Intelligence

Almukaynizi, Mohammed; Marin, Ericsson; Shah, Malay; Nunes, Eric; Simari, GerardoIcon ; Shakarian, Paulo
Otros responsables: Sikos, Leslie F.; Choo, Kim Kwang Raymond
Fecha de publicación: 2020
Editorial: Springer Nature Switzerland AG
ISSN: 1868-4394
e-ISSN: 1868-4408
ISBN: 978-3-030-38788-4
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Although cybersecurity research has demonstrated that many of the recent cyberattacks targeting real-world organizations could have been avoided, proactively identifying and systematically understanding when and why those events are likely to occur is still challenging. It has earlier been shown that monitoring malicious hacker discussions about software vulnerabilities in the Dark web and Deep web platforms (D2web) is indicative of future cyberattack incidents. Based on this finding, a system generating warnings of cyberattack incidents was previously developed. However, key limitations to this approach are (1) the strong reliance on explicit software vulnerability mentions from malicious hackers, and (2) the inability to adapt to the ephemeral, constantly changing nature of D2web sites. In this chapter, we address those limitations by leveraging indicators that capture aggregate discussion trends identified from the context of hacker discussions across multiple hacker community websites. Our approach is evaluated on real-world, enterprise-targeted attack events of malicious emails. Compared to a baseline statistical prediction model, our approach provides better precision-recall tradeoff. In addition, it produces actionable, transparent predictions that provide details about the observed hacker activity and reasoning led to certain decision. Moreover, when the predictions of our approach are fused with the predictions of the statistical prediction model, recall can be improved by over 14% while maintaining precision.
Palabras clave: CYBERATTACK , PREDICTION MODEL , CYBERSECURITY , HACKERS
Ver el registro completo
 
Archivos asociados
Tamaño: 674.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/131839
URL: https://link.springer.com/chapter/10.1007/978-3-030-38788-4_2
DOI: https://doi.org/10.1007/978-3-030-38788-4_2
Colecciones
Capítulos de libros(CCT - BAHIA BLANCA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Almukaynizi, Mohammed; Marin, Ericsson; Shah, Malay; Nunes, Eric; Simari, Gerardo; et al.; A Logic Programming Approach to Predict Enterprise-Targeted Cyberattacks; Springer Nature Switzerland AG; 177; 2020; 13-32
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES