Artículo
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
Fecha de publicación:
02/2014
Editorial:
Edp Sciences
Revista:
Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique
ISSN:
0764-583X
e-ISSN:
1290-3841
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Agnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro; A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces; Edp Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 6; 2-2014; 1557-1581
Compartir
Altmétricas