Mostrar el registro sencillo del ítem

dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Amandi, Analia Adriana  
dc.contributor.other
Nayak, Richi  
dc.contributor.other
Ichalkaranje, Nikhi  
dc.contributor.other
Jain, Lakhmi C.  
dc.date.available
2021-05-07T04:48:51Z  
dc.date.issued
2008  
dc.identifier.citation
Godoy, Daniela Lis; Amandi, Analia Adriana; Modeling interests of Web users for recommendation: A user profiling approach and trends; Springer Verlag Berlín; 130; 2008; 41-68  
dc.identifier.isbn
978-3-540-79139-3  
dc.identifier.issn
1860-949X  
dc.identifier.uri
http://hdl.handle.net/11336/131608  
dc.description.abstract
In order to personalize Web-based tasks, personal agents rely on representations of user interests and preferences contained in user profiles. In consequence, a critical component for these agents is their capacity to acquire and model user interest categories as well as adapt them to changes in user interests over time. In this chapter, we address the problem of modeling the information preferences of Web users and its distinctive characteristics. We discuss the limitations of current profiling approaches and present a novel user profiling technique, named WebProfiler, developed to support incremental learning and adaptation of user profiles in agents assisting users with Web-based tasks. This technique aims at acquiring comprehensible user profiles that accurately capture user interests starting from observation of user behavior on the Web.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
USER PROFILING  
dc.subject
RECOMMENDER SYSTEMS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modeling interests of Web users for recommendation: A user profiling approach and trends  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-01-27T20:21:56Z  
dc.journal.volume
130  
dc.journal.pagination
41-68  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-540-79140-9_3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-540-79140-9_3  
dc.conicet.paginas
280  
dc.source.titulo
Evolution of the Web in Artificial Intelligence Environments  
dc.conicet.nroedicion
1ra