Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators

Georganos, Stefanos; Brousse, Oscar; Dujardin, Sébastien; Linard, Catherine; Casey, Daniel; Milliones, Marco; Parmentier, Benoit; Van Lipzig, Nicole P. M.; Demuzere, Matthias; Grippa, Tais; Vanhuysse, Sabine; Mboga, Nicholus; Andreo, Verónica CarolinaIcon ; Snow, Robert W.; Lennert, Moritz
Fecha de publicación: 09/2020
Editorial: BioMed Central
Revista: International Journal of Health Geographics
e-ISSN: 1476-072X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología; Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente; Enfermedades Infecciosas

Resumen

Background: The rapid and often uncontrolled rural-urban migration in Sub-Saharan Africa is transforming urban landscapes expected to provide shelter for more than 50% of Africa's population by 2030. Consequently, the burden of malaria is increasingly affecting the urban population, while socio-economic inequalities within the urban settings are intensified. Few studies, relying mostly on moderate to high resolution datasets and standard predictive variables such as building and vegetation density, have tackled the topic of modeling intra-urban malaria at the city extent. In this research, we investigate the contribution of very-high-resolution satellite-derived land-use, land-cover and population information for modeling the spatial distribution of urban malaria prevalence across large spatial extents. As case studies, we apply our methods to two Sub-Saharan African cities, Kampala and Dar es Salaam. Methods: Openly accessible land-cover, land-use, population and OpenStreetMap data were employed to spatially model Plasmodium falciparum parasite rate standardized to the age group 2-10 years (PfPR2-10) in the two cities through the use of a Random Forest (RF) regressor. The RF models integrated physical and socio-economic information to predict PfPR2-10 across the urban landscape. Intra-urban population distribution maps were used to adjust the estimates according to the underlying population. Results: The results suggest that the spatial distribution of PfPR2-10 in both cities is diverse and highly variable across the urban fabric. Dense informal settlements exhibit a positive relationship with PfPR2-10 and hotspots of malaria prevalence were found near suitable vector breeding sites such as wetlands, marshes and riparian vegetation. In both cities, there is a clear separation of higher risk in informal settlements and lower risk in the more affluent neighborhoods. Additionally, areas associated with urban agriculture exhibit higher malaria prevalence values. Conclusions: The outcome of this research highlights that populations living in informal settlements show higher malaria prevalence compared to those in planned residential neighborhoods. This is due to (i) increased human exposure to vectors, (ii) increased vector density and (iii) a reduced capacity to cope with malaria burden. Since informal settlements are rapidly expanding every year and often house large parts of the urban population, this emphasizes the need for systematic and consistent malaria surveys in such areas. Finally, this study demonstrates the importance of remote sensing as an epidemiological tool for mapping urban malaria variations at large spatial extents, and for promoting evidence-based policy making and control efforts.
Palabras clave: DAR ES SALAAM , KAMPALA , POPULATION , RANDOM FOREST , REMOTE SENSING , URBAN MALARIA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.386Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/131413
URL: https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-020-00232
DOI: http://dx.doi.org/10.1186/s12942-020-00232-2
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Georganos, Stefanos; Brousse, Oscar; Dujardin, Sébastien; Linard, Catherine; Casey, Daniel; et al.; Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators; BioMed Central; International Journal of Health Geographics; 19; 1; 9-2020; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES