Mostrar el registro sencillo del ítem

dc.contributor.author
Dematties, Dario Jesus  
dc.contributor.author
Thiruvathukal, George K.  
dc.contributor.author
Rizzi, Silvio  
dc.contributor.author
Wainselboim, Alejandro Javier  
dc.contributor.author
Zanutto, Bonifacio Silvano  
dc.contributor.other
Foster, Ian  
dc.contributor.other
Joubert, Gerhard R.  
dc.contributor.other
Kučera, Luděk  
dc.contributor.other
Nagel, Wolfgang E.  
dc.contributor.other
Peters, Frans  
dc.date.available
2021-05-06T01:07:43Z  
dc.date.issued
2020  
dc.identifier.citation
Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506  
dc.identifier.isbn
978-1-64368-071-2  
dc.identifier.uri
http://hdl.handle.net/11336/131407  
dc.description.abstract
The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOS Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MPI  
dc.subject
OPENMP  
dc.subject
CENTRAL PROCESSING UNITS  
dc.subject
BIOLOGICAL MODELS  
dc.subject
NEUROSCIENCE  
dc.subject
IRREGULAR COMPUTATION  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Towards high-end scalability on biologically-inspired computational models  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-08-24T18:08:34Z  
dc.journal.volume
36  
dc.journal.pagination
497-506  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Clifton  
dc.description.fil
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.description.fil
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos  
dc.description.fil
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina  
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ebooks.iospress.nl/volumearticle/53956  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/APC200077  
dc.conicet.paginas
804  
dc.source.titulo
Parallel computing: technology trends