Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SWIMM 2.0: Enhanced Smith–Waterman on Intel’s Multicore and Manycore Architectures Based on AVX-512 Vector Extensions

Rucci, EnzoIcon ; Garcia Sanchez, Carlos; Botella Juan, Guillermo; de Giusti, Armando EduardoIcon ; Naiouf, Ricardo Marcelo; Prieto Matias, Manuel
Fecha de publicación: 10/04/2019
Editorial: Springer/Plenum Publishers
Revista: International Journal Of Parallel Programming
ISSN: 0885-7458
e-ISSN: 1573-7640
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The well-known Smith–Waterman (SW) algorithm is the most commonly used method for local sequence alignments, but its acceptance is limited by the computational requirements for large protein databases. Although the acceleration of SW has already been studied on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 vector extensions. This SIMD set is currently supported by Intel’s Knights Landing (KNL) accelerator and Intel’s Skylake (SKL) general purpose processors. In this paper, we present an SW version that is optimized for both architectures: the renowned SWIMM 2.0. The novelty of this vector instruction set requires the revision of previous programming and optimization techniques. SWIMM 2.0 is based on a massive multi-threading and SIMD exploitation. It is competitive in terms of performance compared with other state-of-the-art implementations, reaching 511 GCUPS on a single KNL node and 734 GCUPS on a server equipped with a dual SKL processor. Moreover, these successful performance rates make SWIMM 2.0 the most efficient energy footprint implementation in this study achieving 2.94 GCUPS/Watts on the SKL processor.
Palabras clave: BIOINFORMATICS , INTEL-AVX512 , INTEL-KNL , SIMD , SMITH–WATERMAN , XEON-PHI
Ver el registro completo
 
Archivos asociados
Tamaño: 1.907Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/131066
DOI: https://doi.org/10.1007/s10766-018-0585-7
URL: https://link.springer.com/article/10.1007/s10766-018-0585-7
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Rucci, Enzo; Garcia Sanchez, Carlos; Botella Juan, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; SWIMM 2.0: Enhanced Smith–Waterman on Intel’s Multicore and Manycore Architectures Based on AVX-512 Vector Extensions; Springer/Plenum Publishers; International Journal Of Parallel Programming; 47; 2; 10-4-2019; 296-316
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES