Artículo
Changes in the mechanical properties of compression moulded samples of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) degraded by Streptomyces omiyaensis SSM 5670
Fecha de publicación:
02/2009
Editorial:
Elsevier
Revista:
Polymer Degradation And Stability
ISSN:
0141-3910
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Streptomyces omiyaensis SSM 5670 was characterized by its ability to use compression moulded samples of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as its sole carbon source. Biodegradation of PHBV in liquid mineral salts medium was investigated using scanning electron microscopy, gravimetric measurements, capillary viscometry, tensile testing and wide angle X-ray spectroscopy. The biodegradation of PHBV proceeds via surface erosion mechanism, resulting in the formation of pits by microbial attack. PHBV specimens lost about 45% of their original weight after 45 days of exposure. During the degradation process the elastic modulus reduces less than 10%. The formation of pores and microcracks initiated at the degraded pits determines the reduction of the elongation and stress at break. However, the true stress at break is practically independent of the degradation time. No significant changes of PHBV molecular weight or crystallinity were observed during biodegradation. The polymer chain cleavage occurred only at the specimen surface and does not discriminate between crystalline and amorphous states.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA PQUE. CENTENARIO)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Hermida, Elida Beatriz; Yashchuk, Oxana; Miyazaki, Silvia Susana; Changes in the mechanical properties of compression moulded samples of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) degraded by Streptomyces omiyaensis SSM 5670; Elsevier; Polymer Degradation And Stability; 94; 2; 2-2009; 267-271
Compartir
Altmétricas